

Fakultät für Betriebswirtschaft Munich School of Management

Broadband – Status, Plans and future Outlook

(selected results from current projects)

Münchner Kreis - Strategie Workshop

Arnold Picot

Institut für Information, Organisation und Management

München, 24. September 2009

LMU	LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	BROADBAND STATUS UPDATE, PLANS AND FUTURE OUTLOOK	INSTITUTE FOR INFORMATION, ORGANIZATION AND MANAGEMENT PROF. DR. DRES. H.C. ARNOLD PICOT	
-----	---	--	--	--

Agenda

LUDWIG

INSTITUTE FOR INFORMATION, ORGANIZATION AND MANAGEMENT PROF. DR. DRES. H.C. ARNOLD PICOT

Broadband Plans have been published with clear targets by various governments; funding is massive, but search for the right path is still ongoing. Hot Topics

Current Situation

- Broadband hardly available in rural areas
- High competition levels in cities with multiple access technologies
- Massive infrastructure investment programs, e.g.
 - USA: 7.2 billion US\$ (~ 17 EUR/head)
 - EU: 1 billion EUR (~ 2 Eur/head)
 - Australia: 43 billion AU\$ (~ 1.100 EUR/head)
- Currently 56 kBit/s defined as Universal Service according to European Framework
- Different technologies under survey
- Digital Divide widening
- Broadband acknowledged as important, but path to complete broadband coverage not existent

Deploying nationwide Broadband

Is public engagement required for rural broadband at all?

- What sort of engagement is most effective?
- What kind of infrastructure does guarantee highest sustainability?

Additional Challenges

Agenda

The current broadband definition has always been behind actual bandwidth demand, driven by supply and not demand.

Broadband Characteristics

Defining Broadband

- Every Internet connection with a significantly higher performance than 56 kBit/s PSTN (old)
- ITU: 1.5 2.0 Mbit/s transmission capacity
- OECD: 256 kBit/s download capacity
- FCC (update):
 - First Generation Data: 200 768 kBit/s
 - Basic Broadband: 768 kBit/s 1.5 Mbit/s
- Germany: 1.0 MBit/s in Broadband Strategy
- BMWi: 128 kBit/s
- Switzerland: 600 kBit/s Universal Service
- Australian Broadband Guarantee: 512/128 kBit/s
 - Bandwidth Supply drives Demand
 - New Technologies not imaginable yet

How much Bandwidth is enough?

Bandwidth Demand 1980 – 2020:

- Nielsen's Law
 - Supply drives demand; model derived from Gilder's Law
 - Bandwidth doubles every 21 months; e.g. UK matches assumption for the last ten years

LUDWIG-BROADBAND MAXIMILIANS UNIVERSITÄT STATUS UPDATE, PLANS AND FUTURE OUTLOOK *UNCHEN*

INSTITUTE FOR INFORMATION ORGANIZATION AND MANAGEMEN PROF DR DRES H.C. ARNOLD

Besides an accepted positive economic impact of broadband, no connection means not only being offline, it ends with being excluded from the society. **Relevance of Broadband**

- Correlation BB penetration and GDP ~ 0.67
- "General Purpose Technology" acc. to OECD

II Social Impact

- Electronic communication as common form of social interaction (mail/messaging/portals/...)
 - Information (transactions/travel/entertainment...)

Interrelationship? 28 % live in rural areas

Breitband-Verfügbarkeit

The absence of a consistent definition and lacking of public willingness to invest keeps rural areas currently offline.

Lacking Availability of Broadband 1/2

- Rural areas
 - Single/no broadband provider

"Breitbandatlas" in Germany

- Breitbandatlas lists >1 mio people offline:
 - 713 municipalities not served
 - 632 municipalities underserved
- Broadband: ~ 128 kBit/s
- Increasing to 1 MBit/s reduces availability by another 8 % on national level
- "The German market is remarkable with a national DSL penetration rate of 17.3% but only 5.9% in rural areas."1)
- German Broadband Strategy:
 - 2010: 1 MBit/s area wide
 - 2014: 75 % of HH with +50 Mbit/s

Public support of announced 150 mio. EUR will not suffice at all in order to fulfill these targets

UNIVERSITÄT MAXIMILIANS-UNIVERSITÄT MÜNCHEN STITUTE FOR INFORMATION, RGANIZATION AND MANAGEMENT ROF, DR. DRES, H.C. ARNOLD PICO

In Australia, just 2.6 % of the entire population live in remote areas, but only 48% are within range for an broadband access with more than 1.5 MBit/s. Lacking Availability of Broadband 2/2

<image>

- 2008: >45 % of exchanges without DSLAM
- Wireless only available in residential areas

2008: only 48 % of entire population live within
 1.5 km range of ADSL2+ enabled exchanges

Australian Government took immediate action in 2009 with National Broadband Network:

- Investment of AUD 43 billion over eight years, starting with 4.7 billion in the network
- Australian Broadband Guarantee for all Australian residents for metro-comparable services

Agenda

Introduction

Broadband and the Digital Divide

Digital Dividend no substitute for wireline, but necessary complementary solution

Solution PPP?

MAXIMILIANS-UNIVERSITĂT MUNCHEN ISTATUS UPDATE, PLANS AND FUTURE OUTLOOK INSTITUTE FOR INFORMATION, ORGANIZATION AND MANAGEMENT PROF. DR. DRES. H.C. ARNOLD PICO

The term "Digital Dividend" was born by combining the potential benefits from an alternative use of frequencies formerly assigned to terrestrial TV.

Switchover from analog to digital terrestrial television broadcasting

Digitalization

LUDWIG-

Switchover from analogue to digital TV

- Digitalization and Compression
- For same amount of programs and coverage, digital standards need a fraction of the spectrum allocated for analog broadcasting

Spectrum has economic value and is regulated, which led to the term

"Digital Dividend"

Digital Dividend in Germany

The actual size of the Digital Dividend depends on national choice; in Germany 790 – 862 MHz U UDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN STATUS UPDATE, PLANS AND FUTURE OUTLOOK

Establishing wireless broadband coverage is limited by physical restrictions and a trade off between reach, speed, spectrum available and transmission power. Approach, Relationships & Limitations

CAPEX decrease with lower frequencies, but data throughput accordingly
Wireless technologies are less reliable, and by a multiple slower than fixed

Lower operating frequencies allow for larger cell sizes and hence lower CAPEX to achieve coverage.

Constant Data Capacity per Cell

Relationship between Frequency and required # of Base Stations for Coverage

INSTITUTE FOR INFORMATION, ORGANIZATION AND MANAGEMENT PROF. DR. DRES. H.C. ARNOLD PICOT

Wireless today is not sustainable for broadband access in rural areas and should be regarded as complementary solution for mobile devices only.

Wireless for rural Areas

Wireless Broadband

- Shared Medium
 - Usage creates negative externalities to other users
 - Physical limitations in frequency spectrum
- Availability and Reach
 - Tradeoff between cell size and transmission power
- Quality
 - QoS below wireline
- Acceptance
 - Resistance of population due to health concerns

Digital Divide not solved via Digital Dividend

INSTITUTE FOR INFORMATION, ORGANIZATION AND MANAGEMENT PROF DR DRES H.C. ARNOLD PICO

Wired communications is ahead of wireless communications by orders of magnitude; costs per transmitted bit are significantly lower.

Capacity Comparison

- Ultra high data rates only achieved over very short distances wirelessly
 - Wireless access points should be as close as possible to the CPE

UDWIG-

FTTx Technologies are regarded as highly sustainable for deployment of broadband to rural areas.

Sustainability of Technologies

Technology Shortcomings

Wireline

- DSL suffers from too long LL in rural areas
- Coax not available in rural areas, and if, not upgraded to backchannel
- Fibre rollout is most expensive deployment, but cost can be reduced by upgrading later, beginning with FTTX alternatives

Wireless

- WLAN not for long range
- WiMax not relevant
- Satellite with latency problems
- UMTS not available in rural areas

Fibre Core Technology Deployment

- Core and backhaul network mandatory fibre
- FTTH preferred, where not applicable, use of existing infrastructure to connect customer
- Include WLL temporary overcoming delays
- Ensure upgradability
- FTTH deployments do not share bandwidth in a sense which imposes negative externalities on single users
- NGN P2P deployment in focus
- Usage of all technologies available to reduce time lags and connect as many people as possible

For NGA different subnational regulatory regimes are required to cope with differences in metropolitan and rural areas.

Broadband Coverage

Situation

BROADBAND

Metropolitan Broadband Coverage

- Private FTTx deployments in major European cities
- High availability of competitive offerings (e.g. cable, DSL, W...)
- Variety of passive infrastructural components (e.g. ducts,...)
- Sustainable competition level

Rural Broadband Coverage

- Limited access
- Often limited to one technology (e.g. DSL) with less capacity
- No existing NGA business plans Digital Divide¹⁾
- Increasing pace to two-tier society: online and offline
- Potential negative welfare effects for entire society

- Accept higher price level in rural areas (political issue)
- Ex ante regulation will be required in rural areas

PPPs, subsidies, regulatory support

markets, accepting differential pricing Promote infrastructure rollout by

specific means

Fulfill Lisbon Strategy goals, with EU as knowledge based world leader

Define subregional and/or subnational markets Promote infrastructure rollout with e.g. specialized providers,

Source: Picot 2008; Lisbon Summer Summit Conclusion of March 2000; 1) Unofficial consolidated Version of Framework Directive 2002/21/EC (ITRE Version), Preamble

Agenda

Introduction

Broadband and the Digital Divide

Digital Dividend no substitute for wireline, but necessary complementary solution

Solution PPP?

BROADBAND MAXIMILIANS-JNIVERSITÄT STATUS UPDATE, PLANS AND FUTURE OUTLOOK

LUDWIG

Hybrid approaches show highest potential in order to deploy broadband access to rural areas with regard to implementation speed and sustainability.

Infrastructure Enforcement Mechanisms

Law/Legal Enforcement Universal Service Standard Universal Service Obligation Functional Separation Independent Business Case driven (Incumbent) П Business Case driven (Competitor) **Subsidies** Direct as a fraction/percentage Ш Indirect via consumer Hybrid

Public Private Partnership

IV

Publicly owned Networks

- Common
 - **European Position?**
- Duration?
- Resistance
- Business Case not positive
- Resistance against sub national markets
- Market distortions?
- Fight for subsidies
- Competition Law
- Public Private Partnership
- Publicly owned core networks
- Publicly owned networks/network elements

MAXIMILIANS-UNIVERSITÄT MINCHEN I STATUS UPDATE, PLANS AND FUTURE OUTLOOK

UDWIG

STITUTE FOR INFORMATION, RGANIZATION AND MANAGEMENT ROF DR DRES H.C. ARNOLD PICO

Hybrid Forms are suited best for rural areas due to highest implementation speed, availability of financing mechanisms and technological sustainability. Hybrid Forms for rural Broadband

Major Reasons

INSTITUTE FOR INFORMATION, ORGANIZATION AND MANAGEMENT PROF. DR. DRES. H.C. ARNOLD PICC

Cases under survey proof public engagement as major driver for successfull broadband deployment projects in rural areas.

Results from Case Studies

Is public engagement required for rural broadband?

- High demand in rural areas
- Competition will not provide access

What sort of engagement is most effective?

- Hybrid forms show highest success rates
- Cases proof applicability and efficiency

3

What kind of infrastructure does guarantee highest sustainability?

- FTTx with NGN core network are sustainable
- Wireless as complementary solution only

Success Factors

- Public Engagement Governmental aid/subsidy required
- Common Interest Guidelines for State Aid Law
- Entrepreneurship Engagement of local activists
- Local Characteristics
 Integrate related local needs (communityTV, etc.)
- Low Entry Barriers
 Free testing period/opt-out option

LMU	BROADBAND STATUS UPDATE, PLANS AND FUTURE OUTLOOK	INSTITUTE FOR INFORMATION, ORGANIZATION AND MANAGEMENT PROF. DR. DRES. H.C. ARNOLD PICOT	
-----	--	--	--

Thank you!